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Purpose. The aim of this work was a pragmatic, statistically sound and
clinically relevant approach to dose-proportionality analyses that is
compatible with common study designs.
Methods. Statistical estimation is used to derive a (1-a)% confidence
interval (CI) for the ratio of dose-normalized, geometric mean values
(Rdnm) of a pharmacokinetic variable (PK). An acceptance interval
for Rdnm defining the clinically relevant, dose-proportional region is
established a priori. Proportionality is declared if the CI for Rdnm is
completely contained within the critical region. The approach is illus-
trated with mixed-effects models based on a power function of the form
PK 4 b0 ● Doseb1; however, the logic holds for other functional forms.
Results. It was observed that the dose-proportional region delineated
by a power model depends only on the dose ratio. Furthermore, a
dose ratio (r1) can be calculated such that the CI lies entirely within
the pre-specified critical region. A larger ratio (r2) may exist such that
the CI lies completely outside that region. The approach supports
inferences about the PK response that are not constrained to the
exact dose levels studied.
Conclusion. The proposed method enhances the information from a
clinical dose-proportionality study and helps to standardize decision
rules.

KEY WORDS: bioequivalence; dose proportionality; mixed effects
model; pharmacokinetics; power model.

INTRODUCTION

Dose proportionality assessment is a fundamental phar-
macokinetic analysis conducted during clinical development
of a new molecular entity. The term “dose proportionality”

indicates that doubling the dose doubles the pharmacokinetic
measure of maximal (Cmax) or total (AUC) systemic expo-
sure to the drug. Evaluation of the pharmacokinetic variable
(PK) as a function of dose should be pragmatic, statistically
sound and must support clinically meaningful inferences. The
approach should be compatible with common study designs in
drug development in order to foster standardization of deci-
sion rules. Conclusions about proportionality should identify
the relevant dose range, since every drug can have nonlinear
pharmacokinetics at extreme doses.

Numerous hypothesis testing approaches to dose-
proportionality have been proposed. Haynes and Weiss (1)
explored a multiplicative statistical model in order to describe
a disproportionate PK response in terms of two straight lines.
Yuh, Eller and Ruberg (2) outlined a step-down trend test in
which an ANOVA evaluation of a dose-normalized PK pa-
rameter was followed with a family of linear contrasts. Patel
(3) described a stepwise, “backward elimination” polynomial
regression in the context of a within-subject design. If the
coefficient of the highest order term in the polynomial model
of degree q was not significantly different from 0, then the
reduced model of order q-1 was considered, and so forth.
Gough, et al. (4) reasoned that dose proportionality assess-
ment is a problem of estimation rather than hypothesis test-
ing. It is not helpful to perform hypothesis tests only to dis-
miss significant differences as being clinically inconsequential.
Estimation of the magnitude of deviations from dose-
proportionality and the precision of the estimates provide the
essential information. Both estimation of a treatment differ-
ence and comparison of the corresponding confidence inter-
val (CI) to an equivalence region have been applied in nu-
merous studies (e.g. 5–8). Typically, log-transformed, dose-
normalized AUC values are evaluated by ANOVA and ratios
of geometric means and their corresponding 90% CI’s are
reported. Dose proportionality is concluded if the CI for the
difference between two treatments lies entirely within the
range defined for bioequivalence testing. Treating dose as a
continuous, rather than a categorical variable requires a
mathematical model.

The merits of a power model of the form PK 4
b0 ● Doseb1 were recognized by Klamerus, et al. (9). General
applicability of the power model to proportionality assess-
ment was clearly outlined by Gough, et al. The power model
is well suited to detect a nonlinear pharmacokinetic response
and to estimate the magnitude of the deviation. Such an em-
pirical model facilitates standardization of metrics and deci-
sion rules across studies and drugs. A theoretically correct
mechanistic model, perhaps based on a Michaelis-Menton
equation, can be pursued subsequently to investigate the non-
linear process. In the present paper, we extend the estimation
approach to derive confidence intervals and decision rules for
dose-proportional assessment of drug exposure. Although the
approach is best illustrated in conjunction with the power
model, the logic can be generally applied to empiric and
mechanistic models.

METHODS

Proportionality as an Equivalence Problem

The logic for application of confidence intervals to the
dose-proportionality problem is analogous to that for testing
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average bioequivalence in the United States. Bioequivalence
is declared if the (1-a)% CI for the ratio of geometric mean
values for Cmax and AUC are contained completely in the
acceptance interval (QL, QH), where QL < 1 < QH. The cur-
rent FDA guidance (10) defines a 4 0.1, QL 4 0.80 and QH

4 1/QL 4 1.25. Bioequivalence testing leads to a dichoto-
mous outcome—the drug products are bioequivalent or they
are not. There are three possible outcomes of the proposed
CI approach for the actual dose range studied: 1) the PK
variable is definitely proportional to dose; 2) PK is definitely
not proportional to dose; and 3) statistical results are incon-
clusive. Furthermore, inferences from the CI approach are
not limited to the actual dose levels used. Irrespective of out-
come, the method delineates the maximal dose ratio that is
compatible with a dose-proportional PK response, as well as
a threshold dose ratio above which PK is definitely not pro-
portional according to the pre-specified CI criterion.

Linking the CI Criterion to a Statistical Model

There are five steps in linking the desired acceptance
interval (critical region) for the exposure ratio to the param-
eters of a preferred statistical model. Let h be the highest dose
studied, let , be the lowest dose, and let r 4 h/, be the
maximal dose ratio. Then: 1) Specify that proportionality ex-
ists if the ratio of geometric mean PK values equals r; 2)
Divide both sides of the equation by r; thereby specifying that
proportionality exists when the ratio of dose-normalized geo-
metric mean values (Rdnm) is equal to unity; 3) Specify a
lower limit (QL) and an upper limit (QH) for Rdnm as an
inequality based on safety, efficacy or drug registration con-
siderations; 4) Estimate the expected value of Rdnm and the
corresponding confidence interval with a statistical model; 5)
Solve the inequality for the model parameter(s) of interest.

Case 1: Two-dose Case (Analysis of Variance)

The values of PK would be measured at two dose levels,
according to a parallel-group design, a 2-period crossover de-
sign or a dose-escalation design. It would be assumed that PK
was log-normally distributed with equal variances (on the log
scale) at the two dose levels, as is common for bioequivalence
testing. Homogeneity of variance on the log scale is equiva-
lent to a constant coefficient of variation for untransformed
data. Let mh and m, be the geometric means of the PK pa-
rameter at h and , respectively. Dose proportionality holds
when: mh/m, 4 h/, or (, ? mh)/(h ? m,) 4 1. Lower and upper
limits for this dose-normalized ratio would be defined by the
inequality: UL < (, ? mh)/(h ? m,) < UH. Solving for the model
parameter of interest (mh/m,) gives:

h
,

uL ,
mh

m,

,
h
,

uH (1)

Proportionality would be declared when the (1-a) ● 100% CI
for the ratio of geometric means, as estimated with an
ANOVA model appropriate for the study design, is contained
completely in the interval (r ? UL, r ? UH), where r is the dose
ratio.

Case 2: More than 2 Doses (Simple Linear Regression)

The untransformed PK parameter, measured at two or
more dose levels, is modeled as: PK 4 b0 + b1 ● DOSE. The

mean value of PK at the lowest dose is b0 + b1 ? , and that at
the highest dose is b0 + b1 ? h. Dose proportionality is defined
as: (b0 + b1 ? h)/(b0 + b1 ? ,) 4 h/, which upon rearrangement
gives: (,/h)(b0 + b1 ? h)/(b0 + b1 ? ,) 4 1. Lower and upper
limits for this ratio are given by UL < (,/h)(b0 + b1 ? h)/
(b0 + b1 ? ,) < UH, which is algebraically equivalent to:
(h/,) ? UL ? (b0 + b1 ? ,) < b0 + b1 ? h < (h/,) ? UH ? (b0 +
b1 ? ,). The left-hand side of the inequality may be rearranged
to: h ? UL ? b1 − b1 ? h < b0 − (h/,) ? UL ? b0. Dividing both
sides by b1 and 1 − (h/,) ? UL, and noticing that 1 − (h/,) ? UL

is negative (for any dose range of clinical interest), gives b0/b1

< h,(UL − 1)/(, − hUL). Similar algebra for the right hand side
yields the desired inequality for the model parameters:

h,~uH − 1!

, − huH
,

b0

b1
,

h,~uL − 1!

, − huL
(2)

To find the (1 − a) × 100% CI for this intercept/slope ratio
requires either bootstrapping or use of Fieller’s theorem (11).
Equation (2) indicates that the magnitude of the intercept b0

relative to the slope b1, rather than b0 alone, is the important
determinant of proportionality in this case. This fact repre-
sents one reason that a hypothesis test of b0 against 0 is in-
appropriate.

Case 3: Power Model (Regression of
Log-transformed Data)

Here, the key modeling assumption is that the logarithm
of the PK variable is linearly related to logarithm of dose:

ln(PK) 4 b0 + b1 ? ln(dose) (3)

The predicted geometric mean of the high dose is eb0hb1 and
that of the low dose is eb0 ,b1. Dose proportionality corre-
sponds to eb0hb1/eb0,b1 4 h/, which can be rewritten as: (h/
,)b1−1 4 rb1−1 4 1. Lower and upper limits are defined as: UL

< rb1−1 < UH. Taking the natural log, it is seen that ln(UL) <
(b1 − 1)ln(r) < ln(UH). Solved for the model parameters of
interest gives:

1 +
ln~uL!

ln~r!
, b1 , 1 +

ln~uH!

ln~r!
(4)

Dose proportionality would be declared when the (1-a)
● 100% CI for b1 lies entirely within the critical region
(1 + ln(UL)/ln(r), 1 + ln(UH)/ln(r)). This criterion is equiva-
lent to having Rdnm contained completely within the interval
(UL, UH). Notably, this interval has the attractive feature
of being characterized completely by r and the protocol-
specified UL and UH values. This means that only dose ratio
(r), and not the actual doses given on any occasion, needs to
be specified in order to support inferences about proportion-
ality or lack thereof. It is also true that if r2 > r1 then:

ln~r1 ? uL!

ln~r1!
,

ln~r2 ? uL!

ln~r2!
, 1 ,

ln~r2 ? uH!

ln~r2!
,

ln~r1 ? uH!

ln~r1!
(5)

Confidence Interval Criteria for Dose Proportionality 1279



Thus, as the dose ratio increases, the critical region for b1

narrows. It is intuitive that the criterion for proportionality
should be more stringent for a large dose range than that for
a narrow range. This property has two important conse-
quences. First, a maximal dose ratio r1 can be calculated such
that the CI for b1, denoted (L, U), is included entirely within
the interval defined by Eq. (4). Second, a dose ratio r2 can
sometimes be calculated such that (L, U) lies completely out-
side the acceptance interval. The value of r1 or r2 may be
larger or may be smaller than the actual dose range studied.
Thus, the proposed approach supports inferences about how
the PK response changes with dose that are not constrained to
the doses studied. Extrapolation beyond the studied dose
range should obviously be done cautiously.

The values of r1 and r2 may be calculated as follows. If
1-L > U-1 then solve the following equation for r1: 1 + ln(UL)/
ln(r1) 4 L. This gives r1 4 UL

∧[1/(L − 1)]. If 1-L < U-1 then
solving 1 + ln(UH)/ln(r1) 4 U for r1 gives r1 4 UH

∧[1/
(U − 1)]. This procedure ensures that if r < r1 then (L, U) is
completely contained in (1 + ln(UL)/ln(r), 1 + ln(UH)/ln(r)).
If UH 4 1/UL then the analytical solution for r1 is:

r1 = uH
∧ F 1

max~1 − L, U −1!G (6)

A similar set of logic leads to the analytical solution for r2

which is

r2 = uH
∧ F 1

max~L − 1, 1 − U!G (7)

When L < 1 and U > 1, r2 cannot be solved. This is logical for
this circumstance, since it implies strict dose proportionality is
tenable.

Dose-proportionality data are commonly obtained fol-
lowing drug administration to healthy subjects or patients on
two or more occasions. If the power model is appropriate,
then a mixed-effects statistical model based on Eq. (3) can be
used to account for correlation between repeated measure-
ments in a given subjects. The following general form was
considered:

ln(PKij) 4 (b0 + h1i) + (b1 + h2i) ? ln(DOSEij) + «ij (8)

for the jth observation of PK in the ith subject. The model
denotes random between-subject variability h1i ∼ N(0, j1

2) in
the intercept parameter, random between-subject variability
h2i ∼ N(0, j2

2) in the slope, as well as random error «ij ∼ N(0,
s2). The data may not support inclusion of h2i in the model.
The random effects, as well as the fixed effects (b0 and b1)
and their 90% confidence intervals, can be estimated with the
MIXED procedure of SAS and other statistical packages.

Modeling of Clearance

When AUC is dose proportional, then the apparent oral
clearance (CL/F 4 Dose/AUC; F # 1.0) or the clearance
after intravenous dosing (F 4 1.0) is dose-independent. For
any assessment to be congruous, an inference about whether
or not AUC is dose proportional should be exactly the same
as an inference about whether or not clearance is dose inde-
pendent. If AUC at each dose level is log-normally distrib-
uted (an assumption of the power model), then CL/F is also
log-normal since it is the inverse of AUC (times a constant).
Substituting CL/F ● Dose as the PK parameter in Eq. (3) re-
veals that the coefficient of ln(dose) is 1-b1. Thus, the infer-
ence that b1 4 1 for the AUC model is equivalent to the
inference that b1 4 0 for regression of ln(CL/F) on ln(Dose).
The (1-a) confidence interval for the ratio of geometric mean
CL/F values can be compared to a acceptance interval in a
manner analogous to that described above.

Case 4: Saturable Elimination Model (Quadratic Regression
with no Intercept)

This case applies the confidence interval logic to a com-
mon mechanistic model of pharmacokinetic non-linearity.
Consider a single bolus intravenous dose of a drug that dis-
tributes to one volume (V) and that is eliminated by a satu-
rable process characterized by a hyperbolic (Michaelis-
Menton) function with parameters Vmax and Km. Here Km is
the drug concentration at which the elimination rate is half-
maximal (Vmax/2). Wagner (12) showed that drug exposure
(AUC) is:

AUC =
Km

Vmax
Dose +

1
2Vmax V

Dose2 (9)

where his equation has been reparameterized to relate it to
quadratic regression through the origin. If Vmax is large
(elimination is not readily saturable), 1/(2VmaxV) → 0 and
AUC is given by dose times intrinsic clearance (Vmax/Km), a
fundamental pharmacokinetic property. Chau (13) derived
equations for AUC as a function of dose for more complex
pharmacokinetic models of Michaelis-Menton elimination.
Sheppard, et al. (14) showed that the dose-normalized AUC
ratio is:

S1
rD AUCh

AUC,

=
2V ? Km + h
2V ? Km + ,

The values of V and Km are usually unknown; therefore, the
statistical model would be based on an empirical form of Eq.
(9) such as:

AUC 4 b1 ? dose + b2 ? dose2

Table 1. Noncompartmental Parameters from a Phase 1, Dose-escalation Study

Subject
Number

LY333013
Dose

Cmax

(ng/mL)
AUC0-`

(ng ? hr/mL)

1, 2 25 mg 64.82, 67.35 326.4, 437.82
4, 5, 6 50 mg 104.15, 143.12, 243.63 557.47, 764.85, 943.59

250 mg 451.44, 393.45, 796.57 2040.84, 2989.29, 4107.58
7, 8, 9 75 mg 145.13, 166.77, 296.9 1562.42, 982.02, 1359.68

250 mg 313, 387, 843 3848.86, 4333.1, 3685.55
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where b1 4 Km/Vmax and b2 4 1/(2VmaxV). Linking the CI
criterion to the model and solving for the model parameters
gives:

h − ,uL

uL − 1
,

b2

b1
,

h − ,uH

uH − 1
(10)

Calculation of a confidence interval for b2/b1 requires boot-
strapping or use of Fieller’s theorem (11) since it is a ratio of
two normally distributed values.

Decision Rules

The acceptance interval (UL, UH) for Rdnm and the sta-
tistical model for estimation are not alone sufficient to sup-
port clinically meaningful conclusions. If (L, U) lay com-
pletely outside the acceptance interval, then one would con-
clude lack of proportionality. A 90% CI lying entirely within
the critical region would confirm a proportionate increase in
exposure. If the dose ratio of interest falls between r1 and r2,
then (L, U) would span the critical region and no clear-cut
statistic would be obtained. Here, b1 as the best estimate of
deviation from ideal proportionality, and (L, U) indicating
the maximal possible deviations, could be interpreted in the
context of drug safety and efficacy or pharmacological effect

data. This is, understanding the association between systemic
exposure and dose is more difficult that accepting a dichoto-
mous outcome of a statistical test.

RESULTS AND DISCUSSION

Estimation of the expected PK value by means of a sta-
tistical power model, coupled with confidence interval criteria
to define proportionate and disproportionate ranges is a prag-
matic approach to obtaining clinically relevant information on
variation in drug exposure with dose. An essential model as-
sumption is that doubling the dose will increase PK by a
constant proportion. For instance, if increasing -the dose from
100 to 200 causes a 90% increase in the PK parameter of
interest, then a dose increment from 200 to 400 will also in-
crease PK by 90%. The first example illustrates analysis of
limited data typical of a dose-escalation study in early clinical
development, and the second example represents a “defini-
tive” dose proportionality study.

Example 1 (Secretory Phospholipase Inhibitor LY333013)

LY333013 is the methyl ester of [[3-(aminooxoacetyl)-2-
ethyl-1-(phenylmethyl)-1H-indol-4-yl]ocy]acetate, which is a
potent inhibitor of human non-pancreatic secretary phospho-
lipase A2 (sPLA2). When orally administered, LY333013 is
rapidly hydrolyzed to the active acid, which is measured in
plasma. LY333013 is being developed for use in patients with
chronic inflammatory conditions associated with elevated se-
rum levels of sPLA2. Evaluation of exposure (AUC and
Cmax) as a function of dose was an objective of the first clini-
cal study, in which single doses of an oral suspension were
administered to healthy subjects (Table I).

The PK values were evaluated with the following mixed
effects statistical model:

ln(PKij) 4 (b0 + hi) + b1 ? ln(doseij) + «ij

All hi’s and «ij’s were assumed to be mutually independent.
Estimates of b0 and b1 and their 90% CI’s were obtained with
the MIXED procedure (ML method) of SAS. Results re-
vealed a disproportionately low increase in Cmax over the
dose range (Figure 1). The estimate of the “intercept” param-
eter b0 [1.94 with a 90% CI of (1.54, 2.35)] and its between-
subject variability j2 4 0.097 are not of interest here. The

Table 2. Dose Proportionality Assessment of a Phase 1, Dose-escalation Study

Dose range
studied

Predicted
geometric
mean PK
parameter

values
Rdnm 90%

confidence intervala

Conclusion for
dose range

studiedb

Maximal proportional
dose rangec

(r1)

Threshold dose
ratio to reject

proportionalityd

(r2)

Cmax (ng/mL)
25 to 250 mg 80.9 to 467

0.577
(0.477, 0.698) not proportional 2.0 4.2

AUC0-` (ng ? hr/mL)
25 to 250 mg 415 to 3353

0.808
(0.653, 1.001) inconclusive 3.3 no valuee

a Ratio of model-predicted mean values for high and low dose, normalized for dose.
b Proportionality was concluded if the 90% confidence interval for Rdnm was contained completely within (0.8, 1.25).
c Proportionality would be concluded for any dose ratio less than this value.
d Lack of proportionality would be concluded for any dose ratio greater than this value.
e See qualification in text.

Fig. 1. Power model for example 1. The solid line denotes tile ex-
pected geometric mean value and the shading denotes the 90% pre-
diction limits.
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estimate of the slope parameter b1 was 0.7615. The corre-
sponding 90% CI (0.679, 0.844) fell outside the reference in-
terval (0.903, 1.097) defined by Eq. (4) for r 4 10 and UH 4
1/UL 4 1.25, indicating a disproportionate change in Cmax

across the dose range studied.
The modeling results were also expressed in terms of the

actual pharmacokinetic parameter. The ratio of dose-
normalized geometric means (Rdnm) was calculated, where
each mean (Table II) was obtained as exp[1.942 + 0.7615 ●
ln(dose)]. An Rdnm value of 1.00 would denote ideal dose-
proportionality. The 90% CI for the difference in log-
transformed means was calculated within the MIXED proce-
dure. Exponentiation of each limit and division by r gave the
90% CI for Rdnm. This CI lay completely outside (0.80, 1.25),
indicating a disproportionate increase in Cmax.

Setting the lower confidence limit for b1 equal to 1 +
ln(0.8)/In(r) and solving for r gave r 4 r1 4 2.0. That is, if the
dose ratio is #2.0, then the 90% CI for Rdnm will lie entirely
within the critical region (Table II and Fig. 2). Setting U equal
to 1 + ln(0.8)/In(r) gave r 4 r2 4 4.2. If r $ 4.2, then the 90%
CI for the ratio of Cmax values will lie completely outside the
critical region (Fig. 2; Region 3).

The 90% CI for Rdnm based on log-transformed AUC0-`

values (Table II) intersects the acceptance interval (0.80,
1.25). This CI alone does not support any definitive conclu-
sion for the 10-fold range, since the true Rdnm value may lie
within or may lie outside of the acceptance interval. The 90%
CI for b1 was (0.8147, 1.0005). Setting these limits equal to

ln(0.8r)/ln(r) yielded r 4 r1 4 3.3 and no real value for r2.
Since (U, L) contains 1.0, no real value of r will yield a con-
fidence interval for Rdnm in region 3.

Example 2 (AUC data from H. Patel)

Patel (3) reported AUC0-` data from a 4 × 4 replicated
Latin square design with single 25, 50, 100 and 150 mg doses
of an unidentified drug. Three subjects were randomly as-
signed to each of four treatment sequences. Lack of any car-
ryover effect was evidenced by pre-dose plasma concentra-
tions of “zero.” In the reanalysis of these data, it was assumed
that there was no period or sequence effect. The following
power model with a mixed-effects statistical structure was
used:

ln(PKij) 4 b0 + h1i + (b1 + h2i) ● ln(doseij) + «ij,

for the jth observation in the ith subject. The random inter-
cept (h1), slope (h2), and error («) effects, as well as all indi-
viduals h1i, h2i, and «ij values, were assumed to be mutually
independent. This example demonstrates that the proposed
approach does not restrict the variance model structure. The
power model mirrored the obvious proportionate trend in the
observed data (Fig. 3). It was possible to definitively conclude
that AUC0-` increased proportionally with dose over the
6-fold range, since the 90% CI for Rdnm was completely con-
tained within the acceptance interval (Table III).

The 90% CI for b1 was (0.980, 1.019). The lower limit
corresponds to r1 ≅ 70,000 indicating there was negligible
evidence from this study alone to declare any deviation from

Table 3. Dose Proportionality Assessment of AUC0-` Data from Patel (3)*

Dose range studied

Predicted geometric
mean AUC0-` values

(ng ? hr/mL)
Rdnm and 90%

confidence interval
Conclusion for

dose range studied

Maximal
proportional
dose range

(r1)

Threshold dose
ratio to reject

proportionality
(r2)

25 to 150 mg 179 to 1072
0.9996

(0.97, 1.04) Proportional ∼70,000a no valuea

* Column headers are described in Table II.
a See qualifications in text.

Fig. 2. The ratio of geometric mean Cmax values normalized for dose
(—) and its 90% CI (– – –) as predicted by the power model for
example 1. Region 1 corresponds to a conclusion of proportionality,
while Cmax values in region 3 are definitely not proportional to dose.
Region 2 corresponds to an inconclusive result.

Fig. 3. Power model for Example 2. The solid line denotes the ex-
pected geometric mean value and the shaded region denotes the 90%
prediction limits.
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ideal dose proportionality. This is not to condone extrapola-
tion far beyond the dose levels studied, since any drug would
be expected to display nonlinear pharmacokinetics at inordi-
nately high or low doses. The 90% CI for b1 contained 1.0;
thus, a hypothesis that AUC0-` was truly proportional to dose
could not be rejected based on this study alone. This is rep-
resented by the entry of “no value” in Table III.

Estimation of Deviations from Proportionality

The examples indicate that conclusions are not con-
strained to a dichotomous outcome of “proportional” or “not
proportional” over an arbitrary dose range, since a maximal
dose ratio consistent with proportionality and a threshold ra-
tio above which exposure is definitely not proportional are
defined. The need to link any conclusion on dose proportion-
ality with a specific dose range has been well stated by Gough,
et al. (4) and Sheppard et al. (14). Conclusions from the
power model relate to a dose ratio rather than to specific dose
levels. If there is evidence that this modeling assumption is
inappropriate, then the CI criteria can be used with another
function.

For a given subject sample size, a study design can be
chosen in order to minimize the standard error for b1 and
thereby narrow its confidence interval (minimize region 2).
The standard error is minimized (estimation is most efficient)
when one-half of the observations are collected at the lowest
dose at which precise PK measurements are possible and one-
half at the maximum tolerated dose. From a statistical point
of view, the optimal design is thus a 2-period, 2-treatment
crossover. A desire to collect data at other levels and to verify
the applicability of the power model could be persuasive for
inclusion of additional treatments.

Decision rules based on a confidence interval for the
statistical model of choice can be detached from the power
model, as was noted above for the saturable elimination

model. Irrespective of the mathematical relationship between
PK and dose, the 90% CI for the ratio of expected mean
(arithmetic, least squares, geometric, predicted geometric,
etc.) values of the PK metric can be compared to a pre-
specified acceptance interval (UL, UH). This approach is
straightforward and based on the logic used in bioequivalence
testing. The method can be applied to common dose-
escalation and crossover designs and supports standardization
of decision rules and comparisons across studies and drugs.
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